Hamiltonians arising from L-functions in the Selberg class
نویسندگان
چکیده
We establish a new equivalent condition for the Grand Riemann Hypothesis L-functions in wide subclass of Selberg class terms canonical systems differential equations. A system is determined by real symmetric matrix-valued function called Hamiltonian. To condition, we use an inverse problem special type.
منابع مشابه
On the Zeros of Functions in the Selberg Class
It is proved that under some suitable conditions, the degree two functions in the Selberg class have infinitely many zeros on the critical line.
متن کاملNonvanishing of certain Rankin-Selberg L-functions
In this article we prove that given a holomorphic cusp form f and any point s0 in the complex plane, there is a holomorphic cusp form g such that the Rankin-Selberg L-function L(s, f × g) is non-zero at s0. Résumé: Dans cet article, on prouve le résultat suivant. Etat donné une forme holomorphe cuspidale f et un point quelquonque du plan complexe, il existe une forme holomorphe cuspidale g tell...
متن کاملRankin-selberg L-functions in the Level Aspect
In this paper we calculate the asymptotics of various moments of the central values of Rankin-Selberg convolution L-functions of large level, thus generalizing the results and methods of W. Duke, J. Friedlander, and H. Iwaniec and of the authors. Consequences include convexity-breaking bounds, nonvanishing of a positive proportion of central values, and linear independence results for certain H...
متن کاملThe central value of the Rankin-Selberg L-functions
The values of L-functions at special points have been the subject of intensive studies. For example, a good positive lower bound for the central value of Hecke L-functions would rule out the existence of the Landau-Siegel zero, see the notable paper [IS]; the nonvanishing of certain Rankin-Selberg L-functions is a crucial ingredient in the current development of the generalized Ramanujan conjec...
متن کاملOn the Exceptional Zeros of Rankin-selberg L-functions
In this paper we study the possibility of real zeros near s = 1 for the RankinSelberg L-functions L(s, f × g) and L(s, sym(g) × sym(g)), where f, g are newforms, holomorphic or otherwise, on the upper half plane H, and sym(g) denotes the automorphic form on GL(3)/Q associated to g by Gelbart and Jacquet ([GJ79]). We prove that the set of such zeros of these L-functions is the union of the corre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2021
ISSN: ['0022-1236', '1096-0783']
DOI: https://doi.org/10.1016/j.jfa.2021.109116